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Abstract

Ultrafast nanocrystallography has the potential to revolutionize biology by
enabling structural elucidation of proteins for which it is possible to grow
crystals with 10 or fewer unit cells. The success of nanocrystallography
depends on robust orientation-determination procedures that allow us to av-
erage diffraction data from multiple nanocrystals to produce a 3D diffrac-
tion data volume with a high signal-to-noise ratio. Such a 3D diffraction
volume can then be phased using standard crystallographic techniques. “In-
dexing” algorithms used in crystallography enable orientation determination
of a diffraction data from a single crystal when a relatively large number of
reflections are recorded. Here we show that it is possible to obtain the ex-
act lattice geometry from a smaller number of measurements than standard
approaches using a basis pursuit solver.

Keywords: indexing; crystallography; compressive sensing

1. Introduction

X-ray crystallography is currently the leading method for atomic resolu-
tion imaging of macromolecules. Third generation synchrotron sources per-
mit successful structure solution from crystals 5 microns in size or greater.
This limits the success rate of structure solution to a few percent.

The Linac Coherent Light Source (LCLS) recently began operation [1] at
the SLAC National Accelerator Laboratory in Palo Alto, California, using
energetic electrons from a linear accelerator to produce coherent x-rays with
an instrument called a free electron laser (FEL). Free Electron Laser sources
produce pulses of light that are over 10 orders of magnitude brighter than
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current third generation synchrotron sources [2]. Several other x-ray laser
sources of this type are being built or planned worldwide.

The high number of photons incident on a specimen are expected to
produce measurable diffraction patterns from nanocrystals with as few as 10
unit cells, enabling high resolution structure elucidation of systems which
can only be crystallized into very small crystals that are not suitable for
conventional crystallography. Even for larger crystals, the short pulses can
circumvent the radiation damage problem [3, 4] which limits the resolution
of many sensitive crystals.

In such an experiment, two-dimensional (2D) diffraction images of ran-
domly oriented nanocrystal of the same type can be captured within fem-
tosecond exposure time. These images can then be used to deduce the 3D
structure of the molecule. To see the structure in 3-D, one has to merge
the data from all these individual nanocrystals, whose orientations are not
known.

Femtosecond nanocrystallography brings new challenges to data process-
ing [5]. One problem is that the orientation of each diffraction image obtained
is unknown. Another problem is that a single snapshot of the crystal diffrac-
tion pattern may contain very few reflections. In traditional crystallography,
a small angular range of integration ensures that many Bragg reflections
are recorded while ensuring that overlaps are minimized. This is not possible
with ultrafast x-ray pulses. The relentless improvements of these light sources
(beam energy, beam divergence and wavelength) will further exacerbate the
problem.

These new difficulties make indexing such patterns a hard problem for
existing crystallographic software.

2. Structure Determination from Crystal Diffraction

In traditional crystallography, diffraction images are collected while ro-
tating a sample. A small angular range of integration ensures that all Bragg
reflections are recorded while ensuring that overlaps are minimized. The
strength (structure factor) and orientation of each Bragg reflection is es-
timated from the diffraction geometry (including source divergence, band-
width, pixel size and angular average). The diffracted photon flux I (pho-
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Figure 1: Scattering geometry for coherent x-ray diffraction imaging.

tons/pulse/ pixel) produced by a crystallite is given by
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where F (q) is the continuous scattering from one unit cell (molecule), Rφ is
the 3D rotation matrix of the unknown object orientation, q a vector that
relates the Bragg “reflection” to a point in a three dimensional Fourier space,
Jo is the incident photon flux density (photons/pulse/area), r2e is the electron
cross section, P is a polarization factor, ∆Ω is the solid angle subtended by
a detector pixel at the sample, the (h, k, l) integer values are called Miller in-
dices, (ĥ, k̂, l̂) identify the Bravais lattice characteristic of the crystal periodic
structure, and S is the shape transform of the crystallite finite dimensions.
For large crystals, S is simply a Dirac δ-function. To determine the unit
cell structure factor from nanocrystals truncated after a few unit cells, an
additional finite-size effect needs to be accounted for.

In x-ray crystallography, the term indexing refers to the task of assign-
ing the measured Bragg peaks to the discrete locations of a periodic lattice.
Auto-indexing uses the position of these peaks to deduce the shape and orien-
tation of the lattice, and to identify the lattice coordinates of each measured
peak. It is accomplished in several steps

• Bragg peaks are identified in each image and their 2D pixel coordi-
nates pi,j = p(îi + j ĵ) are recorded. These coordinates are mapped to
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3D coordinates in the 3D reciprocal space according to the geomet-
ric description of elastic scattering shown in Figure 1. In this figure,
kin and kout are the incident and scattered wave vectors that satisfy
|kin| = |kout| = 1/λ, where λ is the wavelength of the x-ray. The
distance between the sample, which is placed at the origin, and the
detector is assumed to be zD. An Ewald sphere centered at (0, 0,−k)
is drawn in the figure. The radius of the sphere is k. The reciprocal
lattice point that contributes to measured Bragg peak at pi,j can be lo-
cated as the vector kout−kin whose end point lies on the Ewald sphere.
The coordinates of this lattice point qi,j satisfy

qi,j = kout − kin =
1

λ

(
pi,j + zDk̂in√
|pi,j|2 + z2D

− k̂in

)
, (2)

where pi,j = p(îi + j ĵ + 0k̂).

• For the purpose of autoindexing, one can simply assign the value of
1 to I(qi,j) for every peak above a noise threshold. As a result, one
obtains a 3D map I(q) in the reciprocal space that contains the values
of either 1 or 0.

• Some type of computational analysis is performed on the 3D map to
ascertain the orientation and the unit cell parameters of the crystal.
The analysis typically proceeds by first determining the reciprocal lat-
tice vectors, and it often makes use of Fourier transform and peak
searches. An efficient algorithm that uses many 1D Fourier transform
was proposed in [6, 7]. It is used in many existing autoindexing soft-
ware packages such as MOSFLM [8]. We will provide details of these
algorithms in the next section.

Once the orientation and the unit cell parameters associated with a crys-
tal has been determined, one may then proceed to estimate the structure
factor of the crystal, from the diffraction geometry (including source diver-
gence, bandwidth, pixel size and angular average). Finally, a phase retrieval
algorithm is used to recover the phase of the Fourier transform and subse-
quently the 3D density map of the crystal.

For the purpose of this paper, we will not discuss the issues of structure
factor determination or the phase retrieval problem. Instead, we will focus
on the autoindexing problem.
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3. Real space autoindexing

Most autoindexing algorithms search for peaks in real space, by applying
some form of three dimensional Fourier transform of the binary reciprocal
space map. A simple numerical thresholding may reveal the positions of the
3D lattice points in real space. They can subsequently be used to determine
the unit cell parameters, crystal orientation and type.

The use of a three-dimensional Fourier transform around the origin for in-
dexing a diffraction pattern was suggested over two decades ago [9]. A similar
approach appears to have been incorporated in the program DENZO, which
has been distributed as part of the diffraction-image processing suite HKL
[10]. A three-dimensional FFT has been used to index diffraction images
by calculating a Patterson function from a set of reflections which have all
been assigned unit intensity [11]. Efficient implementations make use of the
Fourier projection-slice theorem [12], calculating 1D sections of the three
dimensional FTs by a series of projections and 1-dimensional FFTs [7] [13].
Indexing software such as MOSFLM [6], LABELIT [14] utilize this approach.

The complexity of the projection-FFT approach is mn log n, where m is
the number of direction vectors that must be generated, and n is the number
of samples along the projected 1D intensity profile, which is proportional to
N1/3, where N is the total number of sampled voxels contained in the crystal.
A typical value of m is between 5,000 and 20,000. Clearly, this method will
not work well if the number of Bragg points on a diffraction pattern is small.

Although the argument used in [7] for abandoning the full 3D FFT is the
high cost for performing 3D FFTs of large crystals, this is no longer a serious
issue due to the rapid growth in the processing speed and memory capacity
of modern multi-core microprocessors. At the time of writing, a 3D (5123)
FFT takes about 0.15 seconds on a GPU processor. Furthermore, there are
now algorithms that we may use to take full advantage of the sparsity of the
3D reciprocal space map [15], i.e., there are a few non-zeros in the 3D map
constructed from the Bragg reflections, and reduce the complexity of the 3D
FFT calculation from the standard O(N2 logN) to that of O(N2/3 logN),
where N is the total number of sampled voxels in the crystal.

As we will show in section 6, when the number of measured Bragg peaks
is less than 10, the real space lattice points cannot be easily distinguished
from the rest of the sampled voxels based on the intensity of the inverse 3D
Fourier transform.
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4. Recovering Real Space Lattice via L1 Minimization

An alternative technique for retrieving the positions of the real (and re-
ciprocal) space lattice points associated with a crystal is to use the recently
developed compressive sensing methodology [16, 17, 18] and formulate the
problem as an L1 minimization problem.

Let x be a vector representation of the 3D density map of a crystal lattice
to be determined in real space. Similar to the 3D inverse Fourier transform
approach, we will use the magnitude of each component of x to determine
whether the 3D voxel associated with that component is a real space lattice
point.

The vector x is related to the diffraction measurement through the fol-
lowing equation

bji = eTjiFx, for i = 1, 2, ..., 2m, (3)

where bji is the intensity assigned to a sampled 3D reciprocal space voxel
that lies on the Ewald sphere, m is the total number of voxels on the Ewald
sphere, F is the matrix representation of a 3D discrete Fourier transform, and
eji is the jith column of the identity matrix. To ensure that x is real, Friedel’s
conjugate symmetry is imposed on bji . Therefore, we have 2m equations in
(3) even though the number of samples on the Ewald sphere is m.

Because the number of sampled voxels on a Ewald sphere is always far
fewer than the number of reciprocal lattice points, the linear system defined
by (3) is clearly underdetermined. Therefore, x cannot be recovered by sim-
ply solving (3). However, because the vector x to be recovered is expected
to be “sparse”, i.e., it is expected to have nonzero values at a subset of real
space voxels, it follows from the recently developed compressive sensing the-
ory [17, 18], that we may be able to recover x by solving the following convex
minimization problem

minx ‖x‖1
s.t. MFx = b,

(4)

whereM is an 2m×n sparse “sensing” matrix that contains eTji , i = 1, 2, ..., 2m,
as its rows, b is a vector representation of the intensity values (0’s and 1’s) as-
signed to voxels on the Ewald sphere (and its Friedel symmetric counterpart),
‖ · ‖1 denotes the L1 norm of a vector.

The equality constraint in (4) can be relaxed to an inequality constraint
of the form

‖MFx− b‖ ≤ σ,
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where ‖ · ‖2 denotes the L2-norm of a vector, for some small constant σ to
allow imprecise measurements or noise in the data. The relaxed minimization
problem is often known as the basis pursuit denoising (BPDN) problem, and
the original L1 minimization problem (4) is also known as the basis pursuit
(BP) problem.

5. Algorithms for Solving the L1 Minimization Problem

The L1 minimization problem (4) and its BPDN relaxed form can be
solved in a number of ways. In the software package SPGL1 [19], which we
use to perform the numerical experiments shown in the next section, the
BPDN problem is reduced to a sequence of what is known as the LASSO [20]
problems

minx ‖MFx− b‖2
s.t. ‖x‖1 ≤ τ,

(5)

where τ is a parameter that is determined in an iterative process that involves
finding the root of nonlinear equation φ(τ) = σ, where φ(τ), which is the
optimal value of the objective function in (5) for a given τ , is known as the
Pareto curve. The LASSO problem is solved by a spectral projected gradient
method [21, 22, 23] in SPGL1.

An alternative approach for solving the BPDN problem is to apply a
first-order method developed by Y. Nesterov [24, 25] to solve (4) directly. A
software package based on this approach is called NESTA [26].

The computational cost of both SPGL1 and NESTA is dominated by the
calculation of Fx and F ∗x, i.e., 3D fast Fourier and inverse Fourier trans-
forms required in each iteration. Therefore, the overall cost of an autoindex-
ing scheme based on L1 minimization formulation of the problem is higher
compared to the existing approaches. However, as we will see in the next
section, the advantage of the method is that it can recover the real space
(and reciprocal space) lattice points reliably even when only a few Bragg
peaks can be identified on a diffraction image.

6. Computational Experiment

To test the algorithm we created a 643 real space volume which was then
populated with a cubic lattice that contains 8× 8× 8 voxels. A rotation was
then applied to the lattice (fig. 2(a)) and the result was Fourier transformed
to generate the 3D diffraction volume (fig. 2(d)).
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(a) Volume rendering of the real space vol-
ume showing the rotated crystal lattice.

(b) Surface representation of the Ewald
sphere with the reflections that fall on it
and marked as red dots.

(c) “Observed” diffraction pattern. (d) Reciprocal space lattice produced from
the 3D Fourier transform of a).

(e) Reconstructed real space volume using
the 3D inverse Fourier transform of the ob-
served data.

(f) Reconstructed real space volume using
the L1 minimization method.

Figure 2:
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Figure 3: Normalized intensity values of the voxels reconstructed, sorted in descending
order. The blue plot corresponds to the 3D Fourier transform method while the orange
plot corresponds to the L1 minimization method.

The simulated diffraction data was calculated by selecting those voxels
which are crossed by the Ewald sphere (fig. 2(b)) and projecting them onto
the detector plane according to the geometry shown in Figure 1. Figure 2(c)
shows the simulated 2D diffraction pattern. The detector plane is uniformly
sampled with 64×64 pixels, and we set the distance between the crystal and
the detector to 64 pixels.

We then tried to recover the real space lattice using two methods. In the
first method we simply took the inverse 3D FFT of the diffraction volume in
which the voxels that were not “observed” were set to zero. The intensity of
the transformed volume is shown in Figure 2(e). In the second approach, we
solve the L1 minimization problem (4) discussed in the previous section by
using the SPGL1 software provided by the authors of [19]. The intensity of
the solution x to (4) is shown in Figure 2(f).

It is clearly from Figures 2(e) and 2(e) that the latter approach results
in a much sharper image from which the unit cell parameters can be easily
extracted. To quantify this difference we normalized recovered real space
intensity values of both methods and sorted them in decreasing order. We
plotted the sorted values as 1D curves in Figure 3. The curve that separates
the red and blue region of the plot is associated with the solution to the
L1 minimization problem. The curve that separates the blue region and the
white area above it is associated with the sorted intensities obtained from
a direct 3D inverse FFT. Clearly, the intensity associated with the solution
to the L1 minimization problem decreases much more more rapidly, thereby
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making it easy to select a threshold (shown as the magenta line in Figure 3)
that can be used to identify real space lattice points.

7. Concluding Remarks

We presented a new technique for autoindexing nanocrystal diffraction
images. The technique is based on formulating the indexing problem as an
L1 minimization (or BP) problem and solving the problem by an efficient and
robust numerical algorithm. Although the algorithm is more costly than the
existing approach because it is iterative and performs multiple 3D FFTs, it
has the advantage of recovering crystal lattice reliably when only a few Bragg
peaks can be measured. We demonstrate the feasibility of the technique with
a simple example. More studies are needed to test the efficacy of the method
on different types of Bravais lattices and on datasets that may be contami-
nated with noise. However, we believe that our preliminary results already
indicate that compressive sensing based autoindexing a promising tool for
ultrafast nanocrystallography. Moreover, this type of technique allows other
constraints to be easily incorporated into L1 minimization formulation to
improve the reliability of indexing. It may even be possible to extent this
approach to index powder diffraction data.
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